perpendicular gradients

[SQA] 1. Find the equation of the perpendicular bisector of the line joining A(2, -1) and B(8, 3).

Part	Marks	Level	Calc.	Content	Answer	U1 OC1
	4	С	CN	G2, G5		1996 P1 Q1
•1 •2 •3 •4	midpoint $m_{AB} = \frac{2}{3}$ $m_{\perp} = -\frac{3}{2}$ $y - 1 = -\frac{3}{2}$	= (5,1) (x-5)				

[SQA] 2. P(-4,5),Q(-2,-2) and R(4,1) are the vertices of triangle PQR as shown in the diagram. Find the equation of PS, the altitude from P.

Part	Marks	Level	Calc.	Content	Answer	U1 OC1	
	3	С	CN	G2, G5, G3		1997 P1 Q1	
• ¹ • ² • ³	$m_{QR} = \frac{1}{2}$ $m_{PN} = -2$ $PN: y - 4$	= -2(x+3	3)				

[SQA] 3. The vertices of a triangle are P(-1, 1), Q(2, 1) and R(-6, 2). Find the equation of the altitude of triangle PQR, drawn from P.

Part	Marks	Level	Calc.	Content	Answer	U1 OC1
	3	С	CN	G3, G5		1989 P1 Q1
• ¹ m • ² m • ³ y	$n_{QR} = -\frac{1}{8}$ $n_{\perp} = 8$ $n_{\perp} - (-1) = 8$	(x-(-1))				

Questions marked '[SOA]' @ SOA

3

[SQA] 4. A triangle ABC has vertices A (-4, 1), B (12, 3) and C (7, -7).

- (a) Find the equation of the median CM.
- (b) Find the equation of the altitude AD.
- (c) Find the coordinates of the point of intersection of CM and AD.

Part	Marks	Level	Calc.	Content	Answer	U1 OC1
<i>(a)</i>	3	С	CN	G3		1999 P2 Q1
(b)	3	С	CN	G3, G5		
(C)	3	С	CN	G8		

(a) \bullet^1 midpoint = (4, 2)

•²
$$m_{MC} = -3$$

•³ $y - 2 = -3(x - 4)$ or $y - (-7) = -3(x - 7)$

(b) •4
$$m_{BC} = 2$$

•5 $m_{\perp} = -\frac{1}{2}$
•6 $y - 1 = -\frac{1}{2}(x - (-4))$

(c)
$$\bullet^7$$
 e.g. $3x + y = 14$ and $x + 2y = -2$

- •⁸ attempt to eliminate a variable
- •9 (6,-4)

- 5. In the diagram A is the point (7,0), B is (-3,-2) and C(-1,8). [SQA] The median CE and the altitude BD intersect at J.
 - (a) Find the equations of CE and BD.
 - (b) Find the co-ordinates of J.

6

2

4

Part	Marks	Level	Calc.	Content	Answer	U1 OC1
(<i>a</i>)	6	С	NC	G3, G5, G8		1992 P1 Q2
(b)	2	С	NC	G8		
• ¹ E • ² n • ³ y	f = (2, -1) $f_{CE} = -3$ f = (-1) = -3	3(x-2) o	rr y−8=	= -3(x - (-1))	• $m_{AC} = -1$ • $m_{BD} = -1$ • $y - (-2) = 1(x - (-3))$ • strat: attempt to solve simultar • $J = (1, 2)$	eously

6. A circle passes through A(-2, 3) and B(4, -1). Find the [SQA] equation of the perpendicular to the chord AB.

Part Marks	Level	Calc.	Content	Answer	U1 OC1
4	C	CN	G5, G3		1990 P1 Q3
• midpt = (1, • $m_{AB} = -\frac{2}{3}$ • $m_{diam} = \frac{3}{2}$	1)				

[SQA] 7. ABCD is a square. A is the point with coordinates (3,4) and ODC has equation $y = \frac{1}{2}x$.

- (a) Find the equation of the line AD.
- (b) Find the coordinates of D.
- (c) Find the area of the square ABCD.

Part	Marks	Level	Calc.	Content	Answer	U1 OC1				
<i>(a)</i>	3	С	CN	G5, G3		1994 P2 Q2				
(b)	2	С	CN	G1						
(C)	2	С	CN	G1						
(a)	(a) \bullet^1 using $m_1m_2 = -1$									
	• ² m_A • ³ y -	$a_D = -2$ $4 = -2(x)$	-3)							
(b)	• ⁴ stra	ategy for	sim. equ	ations						
	• ⁵ 2x·	+y = 10	or equiv							
	• ⁶ (4,	2)								
(c)	• ⁷ stra	ategy : fii	nd lengtl	n of AD						
	• 5									

(3)

(3)

(2)

- [SQA] 8. P, Q and R have coordinates (1, -2), (6, 3) and (9, 14) respectively and are three vertices of a kite PQRS.
 - (*a*) Find the equations of the diagonals of this kite and the coordinates of the point where they intersect.
 - (*b*) Find the coordinates of the fourth vertex S.

Part	Marks	Level	Calc.	Content	Answer	U1 OC1
<i>(a)</i>	7	С	CN	G8, G3, G5		1990 P2 Q2
<i>(b)</i>	2	C	CN	G8		
(a)	• m_{PR} • p_{R} : • m_{QS} • m_{QS} • m_{QS} • q_{S} : • m_{QS} • $m_$	x = 2 <i>e.g.</i> $y + 1$ wing to $x = -\frac{1}{2}$ <i>e.g.</i> $y - 1$ wing to s (4, 4)	2 = 2(x - 1) use $m_1 m_2$ $3 = -\frac{1}{2}(x - 1)$ solve sim	1) = 1 for m_{QS} :- 6) sultaneously		
(b)	• ⁸ \overrightarrow{QM} • ⁹ $S =$	l = <i>MS</i> or (2,5)	r equival	ent indication		

- [SQA] 9. Relative to the axes shown and with an appropriate scale, Alex stands at the point (-2, 3) where Hartington Road meets Newport Road.
 - (a) Find the equation of Newport Road which is perpendicular to Hartington Road.
 - (b) Brenda is waiting for a bus at the point
 (-5, 1). Show that Brenda is standing on Newport Road.

(a)		LUVUI	Calc.	Content	Answer	U1 OC2	
(11)	3	С	CN	G3, G5		1993 P1 Q2	
(<i>b</i>)	1	С	CN	A6			
• $m_{OA} = -\frac{3}{2}$ • $m_{\perp} = \frac{2}{3}$							
• $y-3 = \frac{2}{3}(x+2)$							

Questions marked '[SOA]' @ SOA

10. (a) The diagram shows an incomplete sketch of [SQA] the curve with equation $y = x^3 - 4x^2 + 2x - 1$. Find the equation of the tangent to the curve at the point P where x = 2.

(b)

the curve at P.

positive direction of the x-axis.

Part	Marks	Level	Calc.	Content	Answer	U1 OC3
<i>(a)</i>	5	С	CN	G3, C4, G3		1998 P2 Q3
(b)	2	С	CN	G2, G5		1
(a)	$ \begin{array}{c} \cdot 1 & \frac{dy}{dx} \\ \cdot ^2 & 3x \\ \cdot ^3 & \text{gra} \\ \cdot ^4 & y_A \\ \cdot ^5 & y^4 \end{array} $	= $x^{2} - 8x + 2$ adient = - = -5 x - 5 = -2(x)	-2 (calcu - 2)	lated from $\frac{dy}{dx}$)		
(<i>b</i>)	• ⁶ m ₁ • ⁷ an	$mormal = \frac{1}{2}$ gle = tax	$n^{-1}\frac{1}{2}$			

[SQA] 11. The diagram shows a circle of radius 1 unit and centre the origin. The radius OP makes an angle a° with the positive direction of the x-axis.

(a)	Show that P is the point (cosa°, sina°).	1
(b)	If $\hat{POQ} = 45^\circ$, deduce the coordinates of Q in terms of a.	1
(c)	If $\hat{POR} = 45^\circ$, deduce the coordinates of R in terms of a.	1
(d)	Hence find an expression for the gradient of QR in its simplest form.	4
(e)	Show that the tangent to the circle at P is parallel to QR.	2

Part	Marks	Level	Calc.	Content	Answer	U2 OC3			
(<i>a</i> - <i>c</i>)	3	С	NC	CGD		1999 P2 Q8			
(<i>d</i>)	4	A/B	NC	T8, G2					
(<i>e</i>)	2	A/B	NC	G2, G5]			
(a)	a) • ¹ proof e.g. showing rt - angled triangle with "1" and a ^o								
(b) (c)	•) • ² Q is $(\cos(a-45)^\circ, \sin(a-45)^\circ)$ •) • ³ R is $(\cos(a+45)^\circ, \sin(a+45)^\circ)$								
(<i>d</i>)	4 $\frac{\sin(a+45)-\sin(a-45)}{\cos(a+45)-\cos(a-45)}$ 5 $\frac{\sin a \cos 45 + \cos a \sin 45 - \sin a \cos 45 + \cos a \sin 45}{\cos a \cos 45 - \sin a \sin 45 - \cos a \cos 45 - \sin a \sin 45}$ 6 $\frac{2 \cos a \sin 45}{-2 \sin a \sin 45}$ 7 1								

(e)
$${}^{8} m_{OP} = \frac{\sin a}{\cos a} = \tan a$$

 ${}^{9} m_{igt at P} = -\frac{1}{\tan a}$

- (a) (i) Find the distance between the centres of the two wheels.
 - (ii) Hence calculate the clearance, i.e. the smallest gap, between the front and rear wheels. Give your answer to the nearest millimetre.

(8)

(8)

- (b) B(7,3) is half-way between A and C, and P is the centre of the front wheel.
 - (i) Find the gradient of PB.
 - (ii) Hence find the equation of AC and the coordinates of A and C.

Part	Marks	Level	Calc.	Content	Answer		U2 OC4
<i>(a)</i>	8	С	CR	G9, G1			1994 P2 Q4
(b)	8	С	CR	G2, G5, G12			
(a)	 ¹ centr ² centr ³ distant ⁴ radiu ⁵ radiu ⁶ strate ⁶ centr ⁷ √245 ⁸ 133 m 	e (0, 3) e (14, 10) nce betwo us = 3 us = 10 egy (clear es minus - 13 nm or equ	een centr ance = d sum of 1 uivalent	res = √245 istance between radii)	(b) •9 10 11 12 13 14 15 16	$m_{PB} = 1$ $m_{AC} = -1$ y - 3 = -(x - 7) for strategy: substituting correct or end of the substituting correct	er AC te ectly = 0 2,4)

[SQA] 13. Find the equation of the tangent at the point (3,4) on the circle $x^2 + y^2 + 2x - 4y - 15 = 0$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC4				
	4	С	CN	G2, G5, G9		1996 P1 Q4				
• centre = $(-1,2)$										
•2	$m_{radius} = \frac{1}{2}$									
•3	$m_{tgt} = -2$									
•4	y - 4 = -2((x-3)								

4

[SQA] 14. (a) In the diagram, A is the point (-1, 1), B is (3, 3) and C is (6, 2). The perpendicular bisector of AB has equation y + 2x = 4. Find the equation of the perpendicular bisector of BC.

(b) Find the centre and the equation of the circle which passes through A, B and C.

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
<i>(a)</i>	4	С	CN	G5, G3		1991 P2 Q2
(<i>b</i>)	6	С	CN	G10, G1		
(a)	• ¹ m _{RC}	$c = -\frac{1}{3}$				
	• <i>m</i> _⊥ • ³ mic	= 5 Ipoint _{BC}	$=\left(\frac{9}{2},\frac{5}{2}\right)$			
	• ⁴ y-	$\frac{5}{2} = 3(x - $	9 2)			
(b)	• ⁵ y-	3x = -11				
	• ⁶ per	p. bisecto	or passes	thr' centre stated exp	plicitly	
	• ⁷ usi	ng y-33	c = −11 a	and $y+2x=4$		
	• ⁸ (3,	-2)				
	• r^2 =	= 25				
	• ¹⁰ (x-	$(3)^2 + (y)^2$	$(+2)^2 = 25$	5		

(6)

[SQA] 15. In an experiment with a ripple tank, a series of concentric circles with centre C(4,-1) is formed as shown in the diagram. The line levith equation on 2nd 6

The line *l* with equation y = 2x + 6represents a barrier placed in the tank. The largest complete circle touches the barrier at the point T.

- (a) Find the equation of the radius CT.
- (b) Find the equation of the largest complete circle.

Part Marks Level Calc. Content Answer U2 OC4 (a) 3 C CN G5, G3 1993 P2 Q3 (b) 5 C CN G10 1
(a) 3 C CN G5, G3 1993 P2 Q3 (b) 5 C CN G10 1993 P2 Q3
(b) 5 C CN G10
West and the second
(a) = 1 - 2
m = 2
$m_r = -\frac{1}{2}$
3
• $y+1 = -\frac{1}{2}(x-4)$
(b) • ⁴ $(x-4)^2 + (y+1)^2 = r^2$
• ⁵ $(x-4)^2 + (2x+7)^2 = r^2$
-6 = $\frac{2}{2}$, 20 + ((= $\frac{2}{2})$)

•⁶ $5x^2 + 20x + (65 - r^2) = 0$ •⁷ $\Delta = 400 - 4 \times 5(65 - r^2) = 0$ •⁸ $r^2 = 45$ (5)

(3)

 $_{\rm [SQA]}$ ~~16.~ The circle shown in the diagram has equation

$$(x-1)^2 + (y-1)^2 = 5$$

Tangents are drawn at the points (3, 2) and (2, -1). Write down the coordinates of the centre of the circle and hence show that the tangents are perpendicular to each other.

Part	Marks	Level	Calc.	Content		Answer	U2 OC4
	4	С	CN	G9, G5			1994 P1 Q5
•1	centre = (1,1)			•1	<i>centre</i> = (1, 1)	** \
•2	m _{radii} = -	$\frac{1}{2}, -2$		OR	•2	$r=\sqrt{5}, \ d=\sqrt{10}$	B (3, 2)
•3	$m_{tgts} = -$	$2, \frac{1}{2}$			•3	Show $A\hat{C}B = 90^{\circ}$	
•4	$-2 \times \frac{1}{2}$	$=-1 \Rightarrow tg$	ts are ⊥		•4	State tangents \bot to radii	A(2,-1)

- [SQA] 17. (a) The diagram shows a circle, centre P, with equation $x^{2} + y^{2} + 6x + 4y + 8 = 0$. Find the equation of the tangent at the point A(-1, -1) on the circle.
 - (b) The tangent crosses the y-axis at B. Find the coordinates of B.

the O A(-1,-1) x A B 1

¥

1

2

y

(c) Another circle, centre P, is drawn passing through B. The tangent at A meets the second circle at the point C, as shown in the diagram.

Write down the coordinates of C.

- neter.
- (d) Find the equation of the circle with BC as diameter.

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
<i>(a)</i>	4	С	CN	G9, G5		1999 P2 Q2
<i>(b)</i>	1	С	CN	A6		
(C)	1	С	CN	CGD		
(<i>d</i>)	2	С	CN	G10		

(a)
•1 centre = (-3, -2)
•2
$$m_{rad} = \frac{1}{2}$$

•3 $m_{tgt} = -2$
•4 $y - (-1) = -2(x - (-1))$

(b)
$$\bullet^5 \quad B = (0, -3)$$

(c)
$$\bullet^6 C = (-2, 1)$$

(d)
$$\cdot^7 r^2 = 5$$

 $\cdot^8 (x+1)^2 + (y+1)^2 = 5$

[SQA] 18.

Two curves, y = f(x) and y = g(x), are called orthogonal if, at each point of intersection, their tangents are at right angles to each other.

y f

(a) Diagram 1 shows the parabola with equation $y = 6 + \frac{1}{9}x^2$ and the circle M with equation $x^2 + (y-5)^2 = 13$. These two curves intersect at (3, 7) and (-3, 7). Prove that these curves are orthogonal.

- (b) Diagram 2 shows the circle M, from
 (a) above, which is orthogonal to the circle N. The circles intersect at (3, 7) and (-3, 7).
 - Write down the equation of the tangent to circle M at the point (-3, 7).
 - (ii) Hence find the equation of circle N.

Part	Marks	Level	Calc.	Content	Answer	U2 OC4